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ABSTRACT

As shown by means of computer simulations by Alder et al. and by Michels and

Trappeniers the viscosity of hard spheres can be described by the hard-sphere Enskog

theory for densities up to double the critical density. Experimental results for simple gases

agree with these simulations from the critical density upwards, but for lower densities a

sigmoid deviation is found. From the comparison the value of the close-packed molar

volume can be determined. The critical molar volume appears to be nearly five times

larger than this volume. Therefore, at densities higher than the critical the molecules are

within the effective range of the intermolecular potential so that the viscosity can be

described by hard-sphere Enskog theory.

For densities lower than the critical the mean distance between the molecules

becomes larger than the effective range and we get clusters of molecules. The momentum

is then transported by intracluster and intercluster transport. Intracluster transport can be

described by a hard-sphere Enskog theory as mentioned above and intercluster transport

over the voids by the Chapman-Enskog theory of the mean free path type. The sigmoid

curve mentioned above demonstrates the gradual transition from full mean free path

transport to full intracluster momentum transport

With this model the viscosity coefficient of the noble gases can be described

within the experimental accuracy using three temperature-dependent parameters namely

the reduced collision integral Ω∗, the rate of the transition and an integration constant

which determines the initial value.

KEY WORDS: density dependence, Enskog theory, intercluster and intracluster

momentum transport, noble gases, viscosity.

1. INTRODUCTION
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Up to now the only suitable theory which is available to describe viscosity at high

densities is the hard-sphere Enskog theory published in 1922[1]. In 1970 Alder et al.[2]

proved by means of computer simulations that this theory is valid for hard spheres for

densities up to double the critical density. A similar investigation on square-well

molecules reported by Michels and Trappeniers[3] confirmed this conclusion by

extrapolation of the results. These simulation data are given in terms of the viscosity

coefficient relative to the theoretical hard-sphere Enskog value ηEnskog  as a function of V0

/V, where V is the molar volume and V0  the molar volume of close packing.

For comparison with experimental data the latter must also be given relative to

ηEnskog and expressed in the relative density V0 /V. V0 is now an adjustable parameter to

bring the real molecules and the hard spheres on the same measure. Such a comparison is

shown in Figure 1 for argon. The data are taken from Trappeniers et al.[4], Michels et

al.[5], Vermesse and Vidal[6] and Haynes[7] for temperatures from 270 up to 348 K. The

value of V0  has been chosen such that the high density data fit to the solid curve

representing the simulation results in the range indicated as IIIB. This criterion results in a

constant value for the experimental data in the range indicated as II. This datum is used as

a second criterion for the choice of V0  in cases where high-density data are missing.

The result shown in Figure 1 is also found for other simple gases as methane [8,9]

and carbon dioxide[10,11]: in the low density range up to the critical density indicated by

the leftmost vertical solid line the results show a sigmoid deviation from hard-sphere

Enskog theory, in the intermediate density range II up to nearly twice the critical density

the results differ a constant factor from the hard-sphere Enskog value and in the high

density ranges IIIA and IIIB up to the melting density the Enskog theory can not be
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applied. Recently van der Gulik[12] has shown that in this density range Maxwell’s

relaxation-time theory given in his second viscosity paper[13] has to be applied.

The deviation with a constant factor found for range II is due to the fact that two

different molecule-diameters have to be applied in Enskog theory, as mentioned earlier

[14]. According to the hard-sphere Enskog theory the viscosity coefficient ηEnskog  is given

by

ηEnskog = η0hs E(V), (1)

where η0hs stands for the hard-sphere Chapman-Enskog formula

η0hs  =  (5/16) (πmkT)1/2 / πσC
2

(2)

and E(V) for the extension of the theory to higher densities,

E(V) = 1/χ + 0.8 b / V  + 0.7614 ( b / V )2 χ . (3)

χ is the radial distribution function at contact, taken from the Carnahan-Starling equation

of state for hard spheres and b the Van der Waals co-volume given in terms of V0. The

value of V0 found in the way mentioned above is slightly temperature dependent due to the

fact that the molecules are not really hard: at high temperatures the molecules move faster,

collide with greater impact and penetrate each other further than at low temperatures. Also

the corresponding diameter decreases with the temperature. However, the collision cross-

section πσC
2 is not temperature dependent and therefore, σC differs from the diameter

corresponding to V0. σC is now chosen such that the Enskog theory gives an accurate

description of the experimental results in range II. For less simple molecules like methane

and carbon dioxide a form factor has to be added[11]. This second step in the analysis has
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been applied in Figure 2 to the measurements of the viscosity of krypton by Trappeniers et

al.[15] and by van den Berg[16] and is indicated as SET.

2. THE CRITICAL DENSITY

Why can the viscosity coefficient be described by this special version of the hard-

sphere Enskog theory for densities above the critical density but not for densities below

the critical density, while the Enskog theory is valid for both density ranges for hard

spheres? In all cases considered up to now the critical density appears to be nearly equal to

V0 /V = 0.21. Thus, the critical molar volume is nearly equal to five times the molar

volume of close packing so that at the critical density the mean distance between the

molecules is about 1.7 times the diameter of the molecules. This distance corresponds very

nearly to the effective range of the intermolecular forces. At densities higher than the

critical the attractive spheres overlap, the attractive forces on the molecules compensate

each other, they act only as a background force and the molecules can be handled as soft

spheres. Therefore, at these densities the viscosity ηSET can be described in terms of the

special Enskog theory as mentioned above.

At densities somewhat lower than the critical the mean distance between the

molecules becomes larger than the effective range of the intermolecular potential and we

get clusters of molecules held together by the intermolecular forces, interspaced with

empty cracks. With further decreasing density the clusters become smaller and smaller:

trimers and dimers at atmospheric pressure and single gas-molecules at still lower

pressure. Thus, at densities lower than the critical a gas is mesoscopically homogeneous,

but microscopically, on the level of atoms, inhomogeneous, a mixture of clusters and

voids.



6

3. THE VISCOSITY AT LOW DENSITIES

At very low density only single molecules remain and the viscosity coefficient can

be described with the full Chapman-Enskog theory, which is in essence a mean free path

theory. At the critical density the viscosity coefficient is given by the special Enskog

theory as mentioned above. In between, however, we have to cope with two transport

mechanisms: intracluster momentum transport inside the clusters and intercluster

momentum transport over the voids in between them. This two mechanisms model is an

unavoidable consequence of the existence of clusters.

The gradual transition from the mean free path mechanism at very low density to

the hard-sphere Enskog mechanism at the critical density as a function of the density is

demonstrated by the sigmoid curves in range I in Figure 2. The temperature dependence

reflects the temperature dependence of the reduced collision integral Ω*  in the Chapman-

Enskog part. Therefore, the momentum transport between the clusters over the voids is

considered to be of the mean free path type as described by the Chapman-Enskog theory.

A good choice for the momentum transport within the clusters appears to be given by the

special Enskog theory.

According to model theory we have to look for the change in the density

dependence of the contribution F(ρ) of the intracluster transport: ∂F(ρ)/∂(ρ). This

contribution is determined by the amount and magnitude of the clusters and these change

during collisions. Therefore, ∂F(ρ)/∂(ρ) is proportional to both the contribution F(ρ) of the

intracluster transport and the contribution 1 - F(ρ) of intercluster transport:
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∂F(ρ/ρc) / ∂(ρ/ρc)  =  r F(ρ/ρc) { 1 - F(ρ/ρc)} , (4)

where r is the rate of transition and the density ρ is normalised with the critical density ρc

for convenience. This equation is known as the logistic equation. Its integration results in:

F(ρ/ρc)  =  1 / {  1  +  exp (C - r ρ/ρc )} . (5)

where C is an integration constant depending on the initial conditions.

Applying this model to the present case

η  =  F ηSET  +  (1 - F) η0 E(V) , (6)

where ηSET  =   η0SET E(V) and the intercluster transport is of the mean free path type as

described by the Chapman-Enskog theory. η0 E(V) is related to the hard-sphere Enskog

value by η0   =  η0SET / Ω*  , so that

η  =   η0SET E(V)  [F +  (1 - F) / Ω*  ] , (7)

η  =   η0SET E(V) / Ω*  [ 1  +  ( Ω*   -  1 ) F ] (8)

and

η  =   η0SET E(V) / Ω*  [ 1 + ( Ω*   -  1 ) / { 1 +  exp( C - r ρ/ρc )} ] . (9)

4. APPLICATION TO THE NOBLE GASES

This model is applied to the neon data of Trappeniers et al.[17] and of Vermesse

and Vidal [18], as shown in Figure 3. The agreement is within a few parts per thousand.

Figure 4 shows the argon data taken from Michels et al.[5], Vermesse and Vidal[6],

Haynes[7] and Gracki, Flynn and Ross[19] for temperatures from 173 up to 348 K. In this

large temperature range the agreement is within a percent. Figure 5 shows the fit for

krypton where again the data of Trappeniers et al.[15] and of van den Berg[16] are used.

Because of the very high accuracy of the data of Van den Berg these data are fitted with a
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high weight. Finally, in Figure 6 the result for unpublished data of xenon is shown. These

data are taken with the vertical capillary viscometer at the Van der Waals Laboratory.

They show that deviations due to the compressibility in the critical region can easily be

detected. Also it is seen that the short isotherm at 273.15 K, below the critical temperature,

shows the same character. The value of the parameters is rather uncertain in this case due

to lack of number and accuracy. For the same reason results for helium could not be given.

The figures show that the model is valid up to roughly twice the critical density, at higher

densities the deviations increase very fast with the density.

The magnitude of the temperature range for argon makes it possible to

approximate the values of V0, r and C by quadratic functions in T-Tc :

V0 =  15.753    -   0.0194918 (T - Tc) + 4.34407E-05 (T - Tc)
2 (10)

r    = 2.35588  + 0.00616478 (T - Tc) + 5.84897E-05 (T - Tc)
2 (11)

C  =   1.07297 + .000143397 (T - Tc) + 2.09386E-05 (T - Tc)
2 . (12)

The agreement is hardly influenced by this procedure, showing that the values of r and C

are not very critical. Therefore, in general 20 to 30 data are needed to determine these

values for one isotherm.

Finally, the value of the parameters is given in Tables I and II. The value of V0C

determines the value of the collision cross-section  πσC
2. As seen, the values of V0 and Ω*

decrease with the temperature, as expected, and the values of r and C increase with the

temperature. Also given are the number of data used to determine these values. The result

at 308.15 K for Argon shows that 9 data are not enough to determine an accurate value,

the approximation by a quadratic function in T-Tc given above gives nearly the same

result. In conclusion it may be said that the result is very satisfying.
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Table I. General Data of Noble Gases

     M Tc (K) ρc ( kg.m-3 ) V0C ( m
3 . Mmol-1 )

Neon   20.183   44.4   484   6.85

Argon   39.948 150.663   531 15.75

Krypton   83.8 209.4   919 19.75

Xenon 131.3 289.73 1099 26.2
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Table II  The Temperature Dependent Model Parameters of the Noble Gases

   T(K)   V0(m
3.Mmol-1)   Ω*    r    C N

Neon 348.15   5.5868 1.015 7.451 4.595 28 [17]

323.15   5.6177 1.030 4.027 2.537 29 [17]

298.15   5.7091 1.056 2.122 1.197 38 30 [17], 8 [18]

Argon 348.15 13.5765 1.142 5.903 1.982 26 [5]

323.15 13.7195 1.192 4.945 1.563 26 [5]

308.15 13.7458 1.095 8.509 4.980   9 [6]

298.15 13.8870 1.215 4.746 1.684 55 25 [5], 20 [7], 10 [19]

273.15 14.0364 1.301 3.802 1.272   6 [5]

270.15 13.9142 1.287 3.824 1.283 38 [7]

223.15 14.6280 1.432 3.258 1.316 34 18 [7], 16 [19]

173.15 15.3272 1.721 2.483 1.150 61 40 [7], 21 [19]

Krypton 348.15 17.6482 1.312 4.089 1.381 60 24 [15], 36 [16]

323.15 17.8048 1.358 3.843 1.346 26 [15]

298.15 18.0482 1.399 3.939 1.592 61 26 [15], 35 [16]

Xenon 348.15 24.1970 1.488 4.315 1.620 25

323.15 24.4479 1.480 4.785 2.122 21

298.15 24.8187 1.511 5.499 2.488 13

273.15 25.3 1.672 4.42 1.885   7
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FIGURE CAPTIONS

Fig. 1. The relative viscosity η / ηEnskog  of argon as a function of the relative density V0

/V.

The curve represents the simulation data.

Experimental data: [4] 
�

 323 K,  301 K, [5] x 348 K, O 323 K, + 298 K, �  273 K,

 [6] �  308 K, [7] ∆ 298 K, �  270 K.

Fig. 2. The relative viscosity η/ηSET of krypton as a function of the relative density V0 /V.

The curve represents the simulation data.

Experimental data: [15] × 348 K, O 323 K, + 298 K, [16]   348 K, �  298 K.

Fig. 3. The viscosity of neon as a function of density and the deviations from the

theoretical model in parts per thousand. The curves represent the theoretical model.

Experimental data: [17] × 348 K, O 323 K, + 298 K, [18] �  298 K.

Fig. 4. The viscosity of argon as a function of density and the deviations from the

theoretical model in parts per thousand. The curves represent the theoretical model.

Experimental data: [5] x 348 K, O 323 K, + 298 K, �  273 K, [6] �  308 K, [7] ∆ 298 K,

�  270 K, 	  223 K, ∇ 173, [19] 
  298 K,   223 K,  173 K.

Fig. 5. The viscosity of krypton as a function of density and the deviations from the

theoretical model in parts per thousand. The curves represent the theoretical model.
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Experimental data: [15] × 348 K, O 323 K, + 298 K, [16]   348 K, �  298 K.

Fig. 6. The viscosity of xenon as a function of density and the deviations from the

theoretical model in parts per thousand. The curves represent the theoretical model.

Experimental data: × 348 K, O 323 K, + 298 K.
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